CRABS Software Use for the Weather Information Communication Program

Stephen Giguere http://adsb.jhuapl.edu

- Introduction to Automatic Dependent Surveillance Broadcast (ADS-B)
- Comprehensive Real-time Analysis of Broadcast Systems (CRABS) Capabilities and Implementations
- WINCOMM Implementation
- CRABS Demonstration

Automatic Dependent Surveillance Broadcast - Introduction

- ADS-B Broadcasts Include
 - Identification
 - Position
 - Velocity
 - Navigation Uncertainty
 - Climb or Descent Rate
 - Heading
 - Aircraft Category

JHU/APL has developed the CRABS software tools utilizing a PC based platform to collect, analyze, and distribute test data in real-time

Software features:

- Supports multiple data formats
- 2D or 3D display
- Individual target analysis
- Real-time metrics
- Automated data archiving
- Playback

- Component-based
- New functionality derived from reassembling components
- Flexible architecture
- Rapid prototyping
- Comprehensive workspace for multiple data sources

Metric Utilization

APL has developed and implemented a number of metrics operating on the real-time datalink network

Engineering Metrics

- Data quality (spatial)
- Track integrity (continuity)
- > CRC errors
- Network throughputs
- Update rates
- Service volumes
- > Data availability
- Network latencies
- Sensor accuracy

Cost/Benefits Metrics

- > Inflow
- Runway extended centerline
- > Runway arrivals
- Arrival spacing
- Runway occupancy
- Departure
- Outflow
- Flight time
- Taxi Delays

Metrics can be available immediately after a test

□ Louisville, KY

- Common ARTS ASR-9 & ADS-B
- Surface Multilateration ASTERIX 11
- ASDE Radar
- Mode S ADS-B, UAT ADS-B
- > ASTERIX 242 (GBT 2000 Health)

☐ Atlantic City, NJ

- ➤ ASTERIX 22 Fusion targets
- CD2 (w SGF Header)
- > ASTERIX 21 (ADS-B)
- > ASTERIX 22 (TIS-B)

□ Anchorage, AK

- > ASTERIX 21 ADS-B
- > ASTERIX 242 (GBT 2000 Health)
- > ASTERIX 22 (TIS-B)
- > FIS-B (NEXRAD, METAR, TAF)
- > ASTERIX 33 (ADS-B/TIS-B)
- ➤ ASTERIX 23 (NEXGEN GBT Status)

☐ Flight Monitoring Servers

- ➤ Laurel, MD
- Atlantic City, NJ
- Daytona Beach, FL
- > Prescott, AZ

- APL has utilized this system of data collection and analysis for:
 - Operational evaluations
 - Flight monitoring
 - Integration tests
 - Special studies
 - Long-term trend analysis
 - Monitoring capabilities
 - Ground stations
 - ■ADS-B aircraft
 - ■TIS-B service

- This flight demonstration was designed to transfer weather information using the UAT ADS-B data link
- TAMDAR data includes
 - Temperature
 - Wind speed
 - Wind Direction
 - Humidity
 - Icing
 - Turbulence
 - Data Quality
- Experimental TAMDAR payload was placed in an unused field of a UAT message
- Modified avionics and ground station software was used to validate and transfer the TAMDAR payload

- CRABS components were used to develop
 - TAMDAR Emulator
 - Realistic TAMDAR payloads
 - Transferred TAMDAR data to modified avionics
 - Scenario file controlsTAMDAR variables

- Analysis Tool for Modified Software
 - Identified TAMDAR payloads
 - Verified payloads arrived at Control Facility
 - Raw Message Display UAT Airborne Msg Display - Msg Valid Pavload Type 2 Address Qualifier 0 Longitude -74.56369 Address 2 Altitude Type 1 Altitude -50 Nav Integrety 10 Air-Ground State Ground UTC Coupled True Tis-B Site 0 TAMDAR Msq Display Temperature 32.5 Wind Speed 3 Wind Direction 36 Humidity 34 Icina 1 Normalized Turb 132 On Ground AC Constant 89 Ground Speed 1 Data Quality False Auxiliary State Vector Trk Ang/Head Fmt 0 Secondary Alt -1 Trk Ang/Head 0 A/V Len & Width 0 POA False

- Avionics Display Emulator
 - Driven by modified avionics
 - Displayed TAMDAR data

JHU APL

WINCOMM Bench Test Configuration

 All TAMDAR data was validated in realtime using CRABS analysis tools

 CRABS was used to monitor all transmissions and receptions while the test was in progress

- ☐ Flexible display
- ☐ Custom maps
- □ DirectX aircraft symbols
- ☐ DirectX 3D geometry
- ☐ TAMDAR Flight Test April 14, 2005
 - ☐ T symbols represent TAMDAR payloads
 - □ NASA Lear ADS-B aircraft
 - ☐ TIS-B RADAR tracks
 - ☐ FIS-B
 - **□NEXRAD**
 - **METAR**

Automatic Dependent Surveillance Broadcast - Introduction

- ADS-B Broadcasts Include
 - Identification
 - Position
 - Velocity
 - Navigation Uncertainty
 - Climb or Descent Rate
 - Heading
 - Aircraft Category

Automatic Dependent Surveillance Broadcast - Introduction

- Air-Air ADS-B
 - Detected by ADS-B Equipped Aircraft
 - Presented to Pilots on a Multifunction Display

Automatic Dependent Surveillance Broadcast - Introduction

Air to Ground

Detected by Ground Broadcast Transceivers

Automatic Dependent Surveillance Broadcast - Introduction

ADSB Broadcast Services

- Traffic Information Services Broadcast (TIS-B)
 Flight Information Services (FIS-B)
 Products
 - NEXRAD Weather
 - Generic Text Products
 - **Expandable Format**

